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Monte Carlo Renormalization Group Calculations for 
Polymers 

M .  M u t h u k u m a r  ~ 

A simple method based on Wilson's renormalization group ideas is applied to 
calculate the dynamical critical exponent z for polymer chains in different 
dynamical regimes. It is shown that the Doi-Edwards reptating chain does not 
belong to the same dynamical universality class as the Rouse chain. The earlier 
results based on e(4 - d, d ~ space dimensionality) expansion for chains with 
excluded volume effect are recovered without any �9 expansion. When combined 
with the Monte Carlo techniques, this method results in a simple scheme for 
calculating the static and dynamic exponents for a polymer chain with a 
prescribed dynamics. Numerical results suggest that the slithering snake model 
of Wall and Mandel for the dynamics is in a different dynamic universality class 
than the Rouse chain. 

KEY WORDS: Monte Carlo; renormalization group; dynamical exponent; 
polymer entanglements. 

1. INTRODUCTION 

The  theoret ica l  descr ip t ion  of the t r anspor t  p roper t ies  of po lymers  in good  
solut ions has  a t t r ac ted  cons ide rab le  a t ten t ion  in the past .  (1) A t  infini te  
d i lu t ion  the p r o b l e m  reduces  to tha t  of  a single po lyme r  cha in  in a good  
solvent.  In  this (Zimrn)  l imit  there  is an  in te rp lay  be tween  the exc luded  
vo lume a n d  the h y d r o d y n a m i c  interact ions .  As  the p o l y m e r  concen t ra t ion  
increases  bo th  the exc luded  vo lume and  the h y d r o d y n a m i c  in terac t ions  get  
progress ively  screened.  W h e n  these in terac t ions  are  comple te ly  screened,  
the d y n a m i c s  of the p o l y m e r  is due  to the  connec t iv i ty  of the chain  only.  
This  case is ca l led  the Rouse  dynamics .  W h e n  the po lyme r  concen t ra t ion  is 
increased  further,  one  is in the en tang lemen t  regime where  the chain  is 
a s sumed  to possess rep ta t ion l ike  dynamics .  (2-4) 
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There are several treatments in the polymer literature to describe the 
dynamical aspects of polymer chains in solutions using the dynamical 
critical exponent, z. This exponent is defined according to the dynamic 
scaling hypothesis: if lengths are scaled by a factor of b then time scales by 
a factor of b z. Once the significance of z is established in the context of 
polymer dynamics, then the various theoretical techniques to calculate z for 
systems undergoing critical phenomena can be employed for polymer 
problems. This has indeed been carried out by the earlier researchers ( 5-8> 
for the single-chain problem. For the case of a single chain in good 
solution, the characteristic time ~- of the relaxation modes depends on the 
contour ,length of the chain (L) as T ~ L  zp, where ~ is the end-to-end 
distance (R) exponent, R ~ L  ~. Originally, de Gennes (5) conjectured that 
z = d (the dimensionality of space) for the non-free-draining limit whether 
or not excluded volume forces are present. In the free-draining limit with 
fully developed excluded volume forces (not realizable in practice) de 
Gennes predicted that z = 2 + 1/p. 

In order to confirm the phenomenological predictions of de Gennes, 
Jasnow and Moore (6) performed a dynamical renormalization group calcu- 
lation to calculate z using an e (= 4 -  d) expansion. Their value of z 
(calculated up to first order in c) agreed with de Gennes' prediction for the 
free-draining case, although there was no agreement for the non-free- 
draining limit. A similar renormalization group calculation was carried out 
by A1-Noaimi eta/., (7> whose results correct up to first order in e agreed 
with de Gennes' predictions for both free-draining and non-free-draining 
limits. Recently Oono and Freed (8> developed a chain configuration space 
renormalization group method for a self-avoiding chain with unaveraged 
hydrodynamic interactions. Using a particular coarse-graining procedure, 
they presented calculations of z to order e. With their procedure for coarse 
graining, Oono and Freed also obtained the value of z for all orders of e 
and the results agreed with the predictions of de Gennes for both non-free- 
draining and free-draining limit. All these theoretical treatments involve 
explicit coarse-graining (blocking) schemes and are technically complex. 

We describe a simple scheme for calculating z for a polymer chain in 
any dynamical regime without any explicit coarse-graining procedure or 
expansion. 

2. METHOD 

Consider a polymer chain with contour length L l, whose end-to-end 
distance is denoted by R(LI). We now construct a renormalization group 
(blocking) transformation so that all lengths in the problem are reduced by 
a scale factor b. Therefore the end-to-end distance of the blocked chain is 
R(LO/b.  Wilson's renormalization group method (9> to calculate the static 
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exponent v (in polymer context) is basically to compare the end-to-end 
distance of an unblocked chain with that of the blocked chain and to find 
the corresponding contour lengths when the end-to-end distances are equal 
for an arbitrary choice of b. Our aim is thus to find two values of L, L 1 and 
L 2, such that R(L1)/b = R(L2) where R(L2) denotes the end-to-end dis- 
tance of an unblocked chain of contour length L 2. Since the exponent u is 
defined by the relation R ~ L  p, it follows that u = lnb/ln(Ll/L:).  Clearly 
this procedure is identical to scaling. However, if one considers a more 
complicated situation with additional variables in the system (e.g., with 
dynamics), the simple identification of the above method with scaling does 
not hold and it becomes necessary to keep track of the renormalization of 
all the variables. 

The method for the calculation of the dynamical critical exponent z is 
similar to that in the static case except that we now consider the time- 
dependent correlation function, ([R(L, t) - R(0, 0] 2) for a chain with con- 
tour length L, where R(0, 0) is the position vector of one end of the chain at 
some conveniently chosen reference time zero, R(L, t) is the position vector 
of the end of the chain at time t, and ( [ R ( L , 0 ) -  R(0,0)] 2) = R2(L). 
According to the dynamic scaling hypothesis, if length is scaled by a factor 
of b, then time scales by a factor of b z. If a chain of contour length L 1 is 
blocked such that all lengths in the problem have been reduced by a factor 
of b, then we expect from dynamic scaling that the original time scale, [1, is 
reduced to t l /b  z. Our method of finding z has two steps. The first is to find 
L 2 and L 1 so that R(L2) is equal to R(Lj) /b  for an arbitrary choice of b. 
The second is to compare the time dependencies of ([R(L 1, t ) -  R(0, 0)]2) 
and ([R(Lz,t) -R(0 ,0) ]  2) and to find the times such that the time- 
dependent correlation functions match. In other words we search for two 
times t I and t 2 such that 

( [ R ( L 2 , t 2 ) - R ( 0 , 0 ) ]  2) ([R(L~, t l ;b)-R(O,O;b)]  2) 
= ( 1 )  

(R2(L2)) (R2(L1;b))  

where (R2(L1, b ) ) =  R2(L1)/b 2. The numerator on the right-hand side of 
Eq. (1) is the value of the correlation function ([R(L 1, tl) - R(O, 0)]2} after 
performing the above-mentioned blocking once. We can then determine z 
since t 2 = q / b  z. This method is illustrated below for several model dynam- 
ics of polymer chains. 

3. R O U S E - Z I M M  DYNAMICS 

Consider a chain with full excluded volume and hydrodynamic inter- 
actions between its monomers. Combining the fluctuation-dissipation theo- 
rem and the Langevin equation describing such a chain, the time- 
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dependent correlation function is given by (m) 

([R(s,t)-R(s',t')l 2) 

o o  '7/" 
t,(q)q: { l_  cos[ q(~ - r 

• exp - lt(q ) 

ll(q) = B(v)q '-2~ 

~A (0  
B(~) = r(1 - 2~)cos(~ 0 
A (v) = 0.677(wl) 1-" 

(2) 

where R(s, t) is the position vector of the chain at arc length s and time t, 
D(q) is the mode-dependent  diffusion constant, l is the Kuhn  step length, w 
is the strength of the excluded volume interaction, (11~ k~ T is the Boltzmann 
constant multiplied by the temperature, and F is the gamma function. 

3,1. Non-Free-Draining Limit 

In this limit, the hydrodynamic interaction between the various beads 
of the chain dominates over the frictional force arising from various beads 
rubbing against the solvent. Now D(q) is given by 

D(q) = C(v)q ~-' (3) 

r(1 - v)cos[(1 - v)~r/2] 
c ( o  = %[6~r3A(v)] '/2 

where T0 is the solvent viscosity. Substitution of Eq. (3) into Eq. (2) yields 
for the normalized time correlation function for the end-to-end distance 
vector 

( [ R ( L , , )  - R(0, 0) ]2) 
= 2~'L -2~ s 

( R 2(L)) F(1 --- 2 v--~))c-os(vr 0 

• { 1 - cos(qL)exp[ 3ksTC(v) B(v) q3"t]) 

(4) 
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We now apply the method presented in Section 2 to Eq. (4). Let us 
choose L1 and L2 so that the static correlation lengths match, R(LO/b 
= R(L2) where b = (L1/L2)L It therefore follows from Eqs. (1) and (4) that 
we search for t 1 and t 2 satisfying the equation 

= L;2~fo~dqq-(l+2~ 1 - cos(qLz)eX p q3~t 2 (5) 

where L 2 - - L I b - ] / L  Substitution of the dynamic scaling criterion, t 2 
-- q/b z in Eq. (5) yields 

fo~176 3kBTC(V) q3~t ' l }B(v)  

b-q-~ )exp[ 

b2( l- z/3)~~176 x -~ i +2,) 
! 

d 0  

3ksTC(v) B(v) q3~tl ] } b z 

• 1 - cos b (]/~)(j-z/3) exp B(v) x3Vtl (6) 

The right-hand side of Eq. (6) is equal to the left side only if z = 3. Note 
that the value of z in the non-free-draining limit is independent of the 
exponent v, i.e., z = 3 for both good and theta solutions. 

3.2. Free-Draining Limit 

In the free-draining (Rouse) limit both the hydrodynamic and ex- 
cluded volume interactions are completely screened out so that 

l 1 D(q) = ~ ,  v = ~ ,  l,(q) = t (7) 

where g is the bead friction coefficient. Substituting Eq. (7) into Eq. (2) 
gives 

( [ R ( L , t )  - R(0,0)] 2 ) 
_ 2 ~ ( 3k rq t)] 

(8) 
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Choosing L l and L 2 so that the static correlation lengths match, R(LO/b 
= R(L2) [b = (LI/L2)l/2], the dynamical exponent z is obtained from the 
equality 

q2[1-cos(qL1)exp( 3kBT 

l :b2s 7 -bT- ) exp( 3kBTqZt' ~b ~ ) 

-~-b(2-z/2's162 ~, (9) 

The equality in Eq. (9) is valid only if z = 4. 

3.3. Self-Avoiding Rouse Chain 

This model (with no hydrodynamic interaction) has been extensively 
studied in the literature, although this limit cannot be realized experimen- 
tally. The time correlation function for this model is 

(R(L,t).R(L,O)) 

( 2 v -  1)L -2v oo 
= F O - - ~ v )  s q,+2,dq {1 - cos(qL)exp[-Dql+2"t]} (10) 

where D is the effective diffusion constant. Let us choose L o and L~ so that 
the static matching exists, R(Lo)/b = R(L]) where b = (Lo/L2) v. It there- 
fore follows upon substitution of the dynamic scaling criterion, t~ = to/b ~, 
that z is given by the equality 

s  q(l +2~)dq [1 - cos(qLo)exp(- Dq l+ 2~to) ] 

= b[2_z+z/(l+2v)lfoo dq 
ao ql+2p 

x{l_cos( qLo +2%] b[1/,-z/(]+2~)l lexp[ - Dq 1 (ll) 

Therefore, z = 2 + 1/v. 
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4. D O I - E D W A R D S  DYNAMICS 

The time correlation function for the end-to-end distance of the 
Doi-Edwards primitive chain is given by (4> 

( JR(L, t) - R ( 0 ,  0) ]2) 

= 1 + + ~ cos(Trp) 1 - exp L2 
p=l  

where D is the curvilinear diffusion constant. Choosing L 1 and L 2 such that 
L 2 = L J b  2 and using t 2 = t l / b  ~ we get z = 4 from 

2Dot , ~ 4cos(~rp)[ ( D0~7~2/1 ) l  
L----~ + E p2vr2 1 - exp 

p=l L~ 

[ ( )j 2Dot ,b  6-z  + ~ ,  4cos(rrp) Do~r2pZt~b6-Z 

L3 e = 1 p2~r2 1 - exp L~ (13) 

where we have used the molecular weight dependence of D as D =-- D o l L .  

5. W A L L - M A N D E L  MODEL (12) 

Banavar and Muthukumar (13) have recently considered z for the 
dynamics generated by the "slithering snake" model of Wall and Mandel. 
They have studied the statistics of chains of 64 and 32 steps by generating 
ten million configurations in both three and two dimensions. To ensure 
statistically independent sampling, every thirtieth configuration was used 
for calculating averages. The values of ~ and z obtained by the above 
method are given in Tables ! and II respectively. The value of z seems to 
have a systematic dependence on time t~ thus necessitating the study of 
time correlation functions at sufficiently long times. 

The values of z for different dynamical regimes for d = 3 are summa- 
rized in Table III. In conclusion Doi-Edwards dynamics belongs to the 

Table I. 

d N R 2 p 

3 64 156.33 _+ 1.49 
32 68.26-+ 0.48 ; 0.598 + 0.012 

2 64 400.93 - 4.51 
32 143.44 + 1.00 0.742 + 0.014 

II 
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d = 3  

d = 2  

Table II. 

t 2 t 1 Z 

30 109.7 3.13 
60 226.3 3.20 

120 459.9 3.24 
180 695.7 3.26 
240 938.8 3.29 
330 1313.5 3.33 
457 1821.3 3.34 
720 2927.1 3.38 

~3.42 
30 122.81 2.74 
90 377.26 2.79 

240 1020.75 2.81 
330 1404.63 2.82 
450 1932.99 2.83 
600 2589.47 2.84 
810 3513.46 2.85 

~2.87 

Table III. 
i 

Dynamics 

Zimm: chain connectivity with hydrodynamic interaction in 3 
either theta or good solution 

Rouse with excluded volume effect but not hydrodynamic 2 + 1 / 
interaction 

Wall-Mandel model 3.4 
Rouse: no hydrodynamic and excluded volume effects 4 
Doi-Edwards: reptation of primitive chain 6 

same dynamical universality class as that of Rouse dynamics while Wall- 
Mandel dynamics does not. 
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